

Content Cost E55:WG3 - objectives System Reliability - facts System Reliability - Ductility & Redundancy - facts System Reliability - Ductility Analysis of Timber Structural System with Ductile Behavior Future Work PAR Kidkegaard - Department of Civil Engreening - Auborg University

AALBORG UNIVERNITET	
COST E55:WG3 – Objectives	
> Characterisation of multi-scale variability in timber structures	
> Analysis of system effects for several types of timber structure	S
 Qualification of robustness as a characteristic of timber structures 	
Establishing a framework for reliability based design and assessment of timber structural systems based on these considerations.	
28-09-2009 08:46 P.H. Kirkegaard - Department of Civil Engineering - Aaborg University Slide 3	V16

1

28-09-2009 08:46

ochastic Model – 2	ICSS			
Property	Failure type			
Bending strength R _m	Ductile ¹			
Tension parallel to the grain $R_{i, \theta}$	Brittle			
Tension perpendicular to the grain $R_{\rm LHO}$	Brittle			
Compression strength par. to the grain $R_{\rm c,0}$	Ductile			
Compression strength perp. to the grain $R_{\rm c,90}$	Ductile with reserv	e		
Shear R _v	Brittle			
Property	Distribution	COV		
Bending strength $R_{\rm m}$	Lognormal	0.25		
Bending MOE E_{μ}	Lognormal	0.13		
Density p	Normal	0.1	-	

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

AALBORG UNIVERSIT	κγ.	
	Thank You for Your Attention	
28.00.2009.08.46	RH Videonad - Developed of Pull Evolution - Astron University	Siria 18/57

6